filali jaouad

les suites en 1 bac SM

Exercice 1:

Soit
$$\left(u_n\right)_{n\in\mathbb{N}}$$
 la suite définie par :
$$\begin{cases} u_0=6 \\ u_{n+1}=\frac{6u_n+4}{u_n+6} \end{cases} \; ; \; \left(\forall n\in\mathbb{N}\right).$$

- ① Montrer que : $(\forall n \in \mathbb{N})$: $u_n \geq 2$.
- $oldsymbol{@}$ Montrer que la suite $u_{_{u}}$ est décroissante, et qu'elle est convergente.
- - a Montrer que $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique et déterminer sa raison
 - b Calculer (v_n) puis (u_n) en fonction de n.

Exercice 2:

Soit
$$\left(u_n\right)_{n\in\mathbb{N}}$$
 la suite définie par :
$$\begin{cases} u_0=3\\ u_{n+1}=\sqrt{\frac{2}{3}u_n^2+2} \end{cases}$$
; $\left(\forall n\in\mathbb{N}\right)$

- ① a Montrer que : $(\forall n \in \mathbb{N})$: $u_n > \sqrt{6}$.
 - b Montrer que la suite $\left(u_{\scriptscriptstyle n}\right)$ est strictement décroissante, et qu'elle est convergente.
- ② On pose : $(\forall n \in \mathbb{N})$: $v_n = u_n^2 6$.
 - a Montrer que (v_n) est une suite géométrique déterminer sa raison et son premier terme.
 - b Calculer v_n Puis en u_n en fonction de n.

Exercice 3:

Soit $(u_n)_{n\geq 1}$ et $(v_n)_{n\geq 1}$ deux suites définies par :

$$\begin{cases} u_1 = 1 \\ u_{n+1} = \frac{u_n + 2v_n}{3} \end{cases} ; \left(\forall n \in \mathbb{N}^* \right) \quad \text{et} \qquad \begin{cases} v_1 = 12 \\ v_{n+1} = \frac{u_n + 3v_n}{4} \end{cases} ; \left(\forall n \in \mathbb{N}^* \right).$$

- ① Calculer : u_2 , v_2 et v_3 .
- ② On pose : $(\forall n \in \mathbb{N}^*)$: $w_n = v_n u_n$
 - a Montrer que (w_n) est une suite géométrique et déterminer .
 - b Calculer $\lim_{n \to \infty} w_n$.
- ${rac{3}{3}}$ a Montrer que la suite $u_{_{n}}$ est croissante et que la suite $v_{_{n}}$ est décroissante.
 - b Montrer que : $(\forall n \in \mathbb{N}^*)$: $u_n \prec v_n$ puis déduire que : $u_1 \leq u_n \prec v_n \leq v_1$.
- $\textbf{4} \textbf{On pose} : \left(\forall n \in \mathbb{N}^* \right) : \quad t_n = 3u_n + 8v_n$
 - a Montrer que (t_n) est une suite constante.
 - b Exprimer (u_n) et (v_n) en fonction de n.